Abstract

Normalization of drop size distributions (DSDs) is reexamined here. First, an extension of the scaling normalization that uses one moment of the DSD as a scaling parameter to a more general scaling normalization that uses two moments as scaling parameters of the normalization is presented. In addition, the proposed formulation includes all two-parameter normalizations recently introduced in the literature. Thus, a unified vision of the question of DSD normalization and a good model representation of DSDs are given. Data analysis of some convective and stratiform DSDs shows that, from the point of view of the compact representation of DSDs, the double-moment normalization is preferred. However, in terms of physical interpretation, the scaling exponent of the single-moment normalization clearly indicates two different rain regimes, whereas in the double-moment normalization the two populations are not readily separated. It is also shown that DSD analytical models (exponential, gamma, and generalized gamma DSD) have the same scaling properties, indicating that the scaling formalism of DSDs is a very general way of describing DSDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.