Abstract
Based on Hill’s theory of plasticity and the Swift diffuse instability criterion, new theoretical models are proposed for predicting the drawing fracture load and limit drawing ratio (LDR) of an axisymmetric cup drawing. These models take into account the influence of triaxial stress state, anisotropy, strain hardening, bending, and tool geometry. By introducing both conventional and modified Hollomon’s equations, the influences of these variables on the constitutive relation of sheet steels are also analyzed. It is shown that the theoretical predictions of the drawing fracture load are in good agreement with experimental results for a wide range of sheet steels currently used in the automotive industry. Specific tool geometries are found to decrease the drawing fracture load and the LDR, because of increased triaxial stress states and bending effects at the critical section of the workpiece. The optimum punch-profile radius is found to be between 5.0 and 7.0 times the thickness of the sheet. Additionally, the role of both the anisotropy and strain-hardening properties of the sheet steels in determining the drawing fracture load and the LDR are, subsequently, discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.