Abstract
This article is concerned with the problem of variable selection and estimation for high dimensional generalized linear models. In this article, we introduce a general iteratively reweighted adaptive ridge regression method (GAR). We show that the GAR estimator possesses oracle property and grouping effect. A data-driven parameter γ is introduced in the GAR method to adapt the different cases of the true model. Then, such an adaptive parameter γ is adequately taken into consideration to establish a γ-dependent sufficient condition to guarantee the oracle property and the grouping effect. Furthermore, to apply the GAR method more efficiently, a coordinate-wise Newton algorithm is employed to successfully avoid the inverse matrix operation and the numerical instability caused by iteration. Extensive numerical simulation results show that the GAR method outperforms the commonly used methods, and the GAR method is tested on the gastric cancer dataset for further illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.