Abstract
Variable selection is fundamental to high dimensional generalized linear models. A number of variable selection approaches have been proposed in the literature. This paper considers the problem of variable selection and estimation in generalized linear models via a bridge penalty in the situation where the number of parameters diverges with the sample size. Under reasonable conditions the consistency of the bridge estimator can be achieved. Furthermore, it can select the nonzero coefficients with a probability converging to 1 and the estimators of nonzero coefficients have the asymptotic normality, namely the oracle property. Our simulations indicate that the bridge penalty is an effective consistent model selection technique and is comparable to the smoothly clipped absolute deviation procedure. A real example analysis is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.