Abstract

Engineering barriers to the spread of specific genes are of great interest both to increase the predictability of recombinant microorganisms used for environmental applications and to study the role of gene transfer in the adaptation of microbial communities to changing environments. We report here a new gene containment circuit based on a toxin-antidote pair that targets the cell DNA, i.e. the type II EcoRI restriction-modification system. The set-up involved linkage of the ecoRIR lethal gene encoding the EcoRI endonuclease (toxin) to the contained character in a plasmid and chromosomal insertion of the ecoRIM gene encoding the cognate EcoRI methylase (antidote) that protects the target DNA from restriction. Transfer of the contained character to a recipient cell lacking the antidote caused EcoRI-mediated chromosomal breaks, leading to cell death, thereby preventing gene spread. Using transformation and conjugation as mechanisms of DNA transfer and different environmentally relevant bacteria as recipients, we have shown that the potentially universal EcoRI-based containment system decreases gene transfer frequencies by more than four orders of magnitude. Analyses of the survivors escaping killing revealed a number of possible inactivation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.