Abstract
Early fault detection methodology in gear box diagnosis has been proposed to find the status of the gear based on vibration signals obtained from the experimental test rig. Signal processing categorized to time-frequency domain such as continues wavelet transform is used in the proposed work for statistical feature extraction. Feature selection method is used for selecting the extensive useful features among the extracted features to reduce the processing time. A famous optimization technique, Genetic algorithm (GA) and rough set based approach is used to select the best input features to reduce the computation burden. The efficiency of this feature selection method is evaluated based on the classification accuracy obtained from the proposed algorithms: back propagation neural network (BPNN) a famous artificial neural network algorithm and C4.5.Performance of classifiers are evaluated with the different signals acquired from the experimental test rig for different states of gears.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.