Abstract

CO2 emissions from fossil energy have caused global climate problems and threatened human survival. However, there are few studies on the spatiotemporal distribution and driving factors of carbon emissions. This paper takes the Yangtze River Delta (YRD) urban agglomeration as the research object and analyzes the spatiotemporal heterogeneity of carbon dioxide emissions and their driving factors from 2000 to 2017. First, a series of preprocessing, such as resample, interpolation, and image clipping, are conducted on the CO2 emission data and nighttime light remote sensing images. Second, the dynamic time wrapping (DTW) and hierarchical clustering algorithms were involved in manipulating the CO2 emission data. Consequently, the cities’ and CO2 emissions’ time series were classified into four categories and three stages separately. Finally, the geographical detector model (GDM) and geographical and temporal weighted regression (GTWR) are coupled to evaluate the spatiotemporal heterogeneity and quantify the driving factors. The results show the following: (1) The spatiotemporal distribution of CO2 emissions has spatial consistency from 2000 to 2017. High-emission areas are concentrated in economically developed areas such as Shanghai, Suzhou, and Wuxi. The results are consistent with previous research. (2) Regional aggregation is a revealed new trend. CO2 emissions in the target urban areas are gradually converging into economic center cities and diverse class cities, e.g., Shanghai and Ningbo. (3) In cities of different economic development levels, the driving factors of CO2 emissions are different. The secondary sector and urban infrastructure dominate in the early stages of developed cities. On top of that, the influence of the tertiary industry is more significant in the later development stages. According to the results, in the urban development process, humans should not only pursue the increase in speed but also pay attention to the negative impact of the economic development process on the ecological environment. Besides, since the spatiotemporal characteristics and dominant factors of urban carbon emissions are different in each stage of development, the formulation of carbon reduction policies should be associated with urban features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call