Abstract

AbstractThis paper presents single‐column model (SCM) simulations of a tropical squall‐line case observed during the Coupled Ocean‐Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case‐study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water‐cycle Experiment) Cloud System Study.Eight SCM groups using different deep‐convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud‐resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall‐line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale‐interaction’ problem that can only be properly addressed in fully three‐dimensional simulations.Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call