Abstract

In extended target tracking, targets potentially produce more than one measurement per time step. Multiple extended targets are therefore usually hard to track, due to the resulting complex data association. The main contribution of this paper is the implementation of a Probability Hypothesis Density (PHD) filter for tracking of multiple extended targets. A general modification of the PHD filter to handle extended targets has been presented recently by Mahler, and the novelty in this work lies in the realisation of a Gaussian mixture PHD filter for extended targets. Furthermore, we propose a method to easily partition the measurements into a number of subsets, each of which is supposed to contain measurements that all stem from the same source. The method is illustrated in simulation examples, and the advantage of the implemented extended target PHD filter is shown in a comparison with a standard PHD filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.