Abstract

A gauge field treatment of a current oscillating at frequency ν of interacting neutral atoms leads to a set of matter-wave duals to Maxwell's equations for the electromagnetic field. In contrast to electromagnetics, the velocity of propagation has a lower limit rather than upper limit, and the wave impedance of otherwise free space is negative real-valued rather than 377 Ω. Quantization of the field leads to the matteron, the gauge boson dual to the photon. Unlike the photon, the matteron is bound to an atom and carries negative rather than positive energy, causing the source of the current to undergo cooling. Eigenstates of the combined matter and gauge field annihilation operator define the coherent state of the matter-wave field, which exhibits classical coherence in the limit of large excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.