Abstract

Positron emission tomography (PET) is an important imaging modality for biomedical research and drug development. PET requires biochemically selective radiotracers to realize full potential. Fluorine-18 (t1/2 = 109.8 min) is a major radionuclide for labeling such radiotracers but is only readily available in high activities from cyclotrons as [18F]fluoride ion. [18F]fluoroform has emerged for labeling tracers in trifluoromethyl groups. Prior methods of [18F]fluoroform synthesis used difluoro precursors in solution and led to high dilution with carrier and low molar activity (Am). We explored a new approach for the synthesis of [18F]fluoroform based on the radiosynthesis of [18F]fluoromethane from [18F]fluoride ion and then cobaltIII fluoride mediated gas phase fluorination. We estimate that carrier dilution in this process is limited to about 3-fold and find that moderate to high Am values can be achieved. We show that [18F]fluoroform so produced is highly versatile for rapidly and efficiently labeling various chemotypes that carry trifluoromethyl groups, thereby expanding prospects for developing new PET radiotracers.

Highlights

  • Positron emission tomography (PET) is an increasingly important molecular imaging modality for drug development[1,2], biomedical research[3], and medical diagnosis[4,5,6]

  • Because of the role of PET in drug development and a frequent requirement to label drugs and new radiotracers with a positron-emitter, academic groups have pursued the development of methods for labeling CF3 groups with fluorine-1823,24, with the most recent methods being based on generation of [18F]CuCF3 from [18F]fluoride ion either directly or via synthesis of [18F]fluoroform (Fig. 2)[25,26,27,28,29]

  • We explored the radiosynthesis of [18F]fluoroform according to a different strategy involving initial installation of the fluorine-18 followed by subsequent gas phase difluorination

Read more

Summary

Introduction

Positron emission tomography (PET) is an increasingly important molecular imaging modality for drug development[1,2], biomedical research[3], and medical diagnosis[4,5,6]. Because of the role of PET in drug development and a frequent requirement to label drugs and new radiotracers with a positron-emitter, academic groups have pursued the development of methods for labeling CF3 groups with fluorine-1823,24, with the most recent methods being based on generation of [18F]CuCF3 from [18F]fluoride ion either directly or via synthesis of [18F]fluoroform (Fig. 2)[25,26,27,28,29]. Pilot experiments confirmed the production of [18F]fluoroform from this process with the CoF3 column operating between 230 and 350 °C

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.