Abstract
This paper is devoted to a game-theoretic approach to the level-set curvature flow equation with nonlinear dynamic boundary conditions. Under the comparison principle for the dynamic boundary problem, we construct a family of deterministic discrete games, whose value functions approximate the unique viscosity solution. We also apply the game approximation to study the convexity preserving properties and the fattening phenomenon for this geometric dynamic boundary problem.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have