Abstract

This paper addresses the structure and an associated learning algorithm of a feedforward multilayered connectionist network for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed fuzzy adaptive learning control network (FALCON) can be contrasted with the traditional fuzzy logic control systems in their network structure and learning ability. A structure/parameter learning algorithm, called FALCON-GA, is proposed for constructing the FALCON automatically. The FALCON-GA is a three-phase hybrid learning algorithm. In the first phase, the fuzzy ART algorithm is used to do fuzzy clustering in the input/output spaces according to the supervised training data. In the second phase, the genetic algorithm (GA) is used to find proper fuzzy logic rules by associating input clusters and output clusters. Finally, in the third phase, the backpropagation algorithm is used for tuning input/output membership functions. Hence, the FALCON-GA combines the backpropagation algorithm for parameter learning and both the fuzzy ART and GAs for structure learning. It can partition the input/output spaces, tune membership functions and find proper fuzzy logic rules automatically. The proposed FALCON has two important features. First, it reduces the combinatorial demands placed by the standard methods for adaptive linearization of a system. Second, the FALCON is a highly autonomous system. In its learning scheme, only the training data need to be provided from the outside world. The users need not give the initial fuzzy partitions, membership functions and fuzzy logic rules. Computer simulations have been conducted to illustrate the performance and applicability of the proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.