Abstract

This paper addresses the structure and an associated online learning algorithm of a feedforward multilayer neural net for realizing the basic elements and functions of a fuzzy controller. The proposed fuzzy adaptive learning control network (FALCON) can be contrasted with traditional fuzzy control systems in network structure and learning ability. An online structure/parameter learning algorithm, FALCON-ART, is proposed for constructing FALCON dynamically. It combines backpropagation for parameter learning and fuzzy ART for structure learning. FALCON-ART partitions the input state space and output control space using irregular fuzzy hyperboxes according to the data distribution. In many existing fuzzy or neural fuzzy control systems, the input and output spaces are always partitioned into "grids". As the number of variables increases, the number of partitioned grids grows combinatorially. To avoid this problem in some complex systems, FALCON-ART partitions the I/O spaces flexibly based on data distribution. It can create and train FALCON in a highly autonomous way. In its initial form, there is no membership function, fuzzy partition, and fuzzy logic rule. They are created and begin to grow as the first training pattern arrives. Thus, the users need not give it any a priori knowledge or initial information. FALCON-ART can online partition the I/O spaces, tune membership functions, find proper fuzzy logic rules, and annihilate redundant rules dynamically upon receiving online data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.