Abstract

In the framework of handwriting recognition, we present a novel GA–based feature selection algorithm in which feature subsets are evaluated by means of a specifically devised separability index. This index measures statistical properties of the feature subset and does not depends on any specific classification scheme. The proposed index represents an extension of the Fisher Linear Discriminant method and uses covariance matrices for estimating how class probability distributions are spread out in the considered N-dimensional feature space. A key property of our approach is that it does not require any a priori knowledge about the number of features to be used in the feature subset. Experiments have been performed by using three standard databases of handwritten digits and a standard database of handwritten letters, while the solutions found have been tested with different classification methods. The results have been compared with those obtained by using the whole feature set and with those obtained by using standard feature selection algorithms. The comparison outcomes confirmed the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.