Abstract

G protein-coupled receptors (GPCRs) detect a wide variety of physical and chemical signals and transmit that information across the cellular plasma membrane. Dimerization is a proposed modulator of GPCR signaling, but the structure and stability of class A GPCR dimerization have been difficult to establish. Here we investigated the dimerization affinity and binding interface of human cone opsins, which initiate and sustain daytime color vision. Using a time-resolved fluorescence approach, we found that human red cone opsin exhibits a strong propensity for dimerization, whereas the green and blue cone opsins do not. Through mutagenesis experiments, we identified a dimerization interface in the fifth transmembrane helix of human red cone opsin involving amino acids I230, A233, and M236. Insights into this dimerization interface of red cone opsin should aid ongoing investigations of the structure and function of GPCR quaternary interactions in cell signaling. Finally, we demonstrated that the same residues needed for dimerization are also partially responsible for the spectral tuning of red cone opsin. This last observation has the potential to open up new lines of inquiry regarding the functional role of dimerization for red cone opsin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call