Abstract
While aleatory uncertainties have successfully been taken into account by the use of probability theory, the modeling of epistemic uncertainties still remains a challenging topic. As a practical approach to solve this limitation, an interdisciplinary methodology to comprehensive modeling and analysis of systems is presented, which allows for the inclusion of uncertainties – in particular of those of epistemic type – from the very beginning of the modeling procedure. This approach is based on fuzzy arithmetic, a special field of fuzzy set theory, which has gained practical relevance after the introduction of the so-called Transformation Method. As practical and illustrative examples of two different areas of the engineering sciences, the fuzzy arithmetical approach to comprehensive modeling and analysis of uncertain systems is applied to the simulation of automotive crash in structural dynamics as well as to the simulation of landslide failure in geotechnical science and engineering. In both applications, epistemic uncertainties are considered which arise from some lack of knowledge, from simplification in modeling as well as from subjectivity in implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.