Abstract
The performance of computational grids mainly depends on the resource allocation service of a resource management system. Efficient resource allocation is essential for better resource utilisation which could be for both providers and grid users. Resource allocation includes the scheduling of gridlets to the available resources. However, the biggest challenges for grid users are to select the best resources from the available grid resources and to allocate these resources for scheduling of the gridlets. To address these issues and enhance the resource utilisation process, we propose a semantic and proximity-aware fuzzy rule-based model that improves the resource utilisation in a grid environment. The model uses fuzzy techniques with four parameters such as semantic similarity, proximity, number of total machines and number of total processors of each machine. The experimental results provide promising results. Overall, the proposed semantic and proximity-aware fuzzy rule-based decentralised resource discovery model improves the resource utilisation by 23% as compared to non-fuzzy first come first serve (FCFS) technique in a computational grid environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.