Abstract

Many industrial processes belong to nonlinear distributed parameter systems (DPS) with significant spatio-temporal dynamics. They often work at multiple operating points due to different production and working conditions. To obtain a global model, the direct modeling and experiments in a large operating range are often very difficult. Motivated by the multi-modeling, a fuzzy-based spatio-temporal multi-modeling approach is proposed for nonlinear DPS. To obtain a reasonable operating space division, a priori information and the fuzzy clustering are used to decompose the operating space from coarse scale to fine scale gradually. To reduce the dimension in the local spatio-temporal modeling, the Karhunen–Loève method is used for the space/time separation. Both multi-modeling and space/time separation can reduce the modeling complexity. Finally, to get a smooth global model, a three-domain (3D) fuzzy integration method is proposed. Using the proposed method, the model accuracy will be improved and the experiments become easier. The effectiveness is verified by simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call