Abstract

PurposeThe status of welding process is difficult to monitor because of the intense disturbance during the process. The purpose of this paper is to use multiple sensors to obtain information about the process from different aspects and use multi‐sensor information fusion technology to fuse the information, to obtain more precise information about the process than using a single sensor alone.Design/methodology/approachArc sensor, visual sensor, and sound sensor were used simultaneously to obtain weld current, weld voltage, weld pool's image, and weld sound about the pulsed gas tungsten‐arc welding (GTAW) process. Then special algorithms were used to extract the signal features of different information. Fuzzy measure and fuzzy integral method were used to fuse the extracted signal features to predict the penetration status about the welding process.FindingsExperiment results show that fuzzy measure and fuzzy integral method can effectively utilize the information obtained by different sensors and obtain better prediction results than a single sensor.Originality/valueArc sensor, visual sensor, and sound sensor are used in pulsed GTAW at the same time to obtain information, and fuzzy measure and fuzzy integral method are used to fuse the different features in welding process for the first time; experiment results show that multi‐sensor information can obtain better results than single sensor, this provides a new method for monitoring welding status and to control the welding process more precisely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.