Abstract

The object of this study is fuzzy cognitive modeling as a means of studying semistructured socio-economic systems. The features of constructing cognitive maps, providing the ability to choose management decisions in complex semistructured socio-economic systems, are described. It is shown that further improvement of technologies necessary for developing decision support systems and their practical use is still relevant. This work aimed to improve the accuracy of cognitive modeling of semistructured systems based on a fuzzy cognitive map of structuring nonformalized situations (MSNS) with the evaluation of root-mean-square error (RMSE) and mean average squared error (MASE) coefficients. In order to achieve the goal, the following main methods were used: systems analysis methods, fuzzy logic and fuzzy sets theory postulates, theory of integral wavelet transform, correlation and autocorrelation analyses. As a result, a new methodology for constructing MSNS was proposed—a map of structuring nonformalized situations that combines the positive properties of previous fuzzy cognitive maps. The solution of modeling problems based on this methodology should increase the reliability and quality of analysis and modeling of semistructured systems and processes under uncertainty. The analysis using open datasets proved that compared to the classical ARIMA, SVR, MLP, and Fuzzy time series models, our proposed model provides better performance in terms of MASE and RMSE metrics, which confirms its advantage. Thus, it is advisable to use our proposed algorithm in the future as a mathematical basis for developing software tools for the analysis and modeling of problems in semistructured systems and processes. Doi: 10.28991/ESJ-2022-06-02-012 Full Text: PDF

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.