Abstract

Simulation study is used when real world data is hard to find or time consuming to gather and it involves generating data set by specific statistical model or using random sampling. A simulation of the process is useful to test theories and understand behavior of the statistical methods. This study aimed to compare ARIMA and Fuzzy Time Series (FTS) model in order to identify the best model for forecasting time series data based on 100 replicates on 100 generated data of the ARIMA (1,0,1) model.There are 16 scenarios used in this study as a combination between 4 data generation variance error values (0.5, 1, 3,5) with 4 ARMA(1,1) parameter values. Furthermore, The performances were evaluated based on three metric mean absolute percentage error (MAPE),Root mean squared error (RMSE) and Bias statistics criterion to determine the more appropriate method and performance of model. The results of the study show a lowest bias for the chen fuzzy time series model and the performance of all measurements is small then other models. The results also proved that chen method is compatible with the advanced forecasting techniques in all of the consided situation in providing better forecasting accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.