Abstract

Indoor positioning using smartphones has garnered significant research attention. Geomagnetic and sensor data offer convenient methods for achieving this goal. However, conventional geomagnetic indoor positioning encounters several limitations, including low spatial resolution, poor accuracy, and stability issues. To address these challenges, we propose a fusion positioning approach. This approach integrates geomagnetic data, light intensity measurements, and inertial navigation data, utilizing a hierarchical optimization strategy. We employ a Tent-ASO-BP model that enhances the traditional Back Propagation (BP) algorithm through the integration of chaos mapping and Atom Search Optimization (ASO). In the offline phase, we construct a dual-resolution fingerprint database using Radial Basis Function (RBF) interpolation. This database amalgamates geomagnetic and light intensity data. The fused positioning results are obtained via the first layer of the Tent-ASO-BP model. We add a second Tent-ASO-BP layer and use an improved Pedestrian Dead Reckoning (PDR) method to derive the walking trajectory from smartphone sensors. In PDR, we apply the Biased Kalman Filter-Wavelet Transform (BKF-WT) for optimal heading estimation and set a time threshold to mitigate the effects of false peaks and valleys. The second-layer model combines geomagnetic and light intensity fusion coordinates with PDR coordinates. The experimental results demonstrate that our proposed positioning method not only effectively reduces positioning errors but also improves robustness across different application scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.