Abstract
Aggregation of q-rung orthopair fuzzy information serves as an important branch of the q-rung orthopair fuzzy set theory, where operations on q-rung orthopair fuzzy values (q-ROFVs) play a crucial role. Recently, aggregation operators on q-ROFVs were established by employing the Einstein operations rather than the algebraic operations. In this paper, we give a further investigation on operations and aggregation operators for q-ROFVs based on the Einstein operational laws. We present the operational principles of Einstein operations over q-ROFVs and compare them with those built on the algebraic operations. The properties of the q-rung orthopair fuzzy Einstein weighted averaging (q-ROFEWA) operator and q-rung orthopair fuzzy Einstein weighted geometric (q-ROFEWG) operator are investigated in detail, such as idempotency, monotonicity, boundedness, shift-invariance and homogeneity. Then, the developed operators are applied to multiattribute decision making problems under the q-rung orthopair fuzzy environment. Finally, an example for selecting the design scheme for a blockchain-based agricultural product traceability system is presented to illustrate the feasibility and effectiveness of the proposed methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have