Abstract
Safety evaluation of signalized intersections is often conducted by developing statistical and data-driven methods based on data aggregated at certain temporal and spatial levels (e.g., yearly, hourly, or per signal cycle; intersection or approach leg). However, such aggregations are subject to a major simplification that masks the underlying spatio-temporal safety risk patterns within the data aggregation levels. Consequently, high-resolution analysis such as safety risk within signal cycles and at traffic movement level cannot be performed. This study contributes to the literature by proposing a new functional data analysis (FDA) approach for a novel characterization of safety risk patterns of signalized intersections. Functional data smoothing methods that can mitigate overfitting and account for the nonnegative characteristics of safety risk are proposed to model the time series of safety risk within signal cycles at the traffic movement level. Functional analysis of variance method (FANOVA) that can compare the group level differences of functional curves is used to test differences of safety risk functions among different traffic movements. A typical signalized intersection with representative signal types and channelizations is selected as the study location and approximately 1-hour traffic video data recorded by an unmanned aerial vehicle are used to extract traffic conflicts. New movement-level safety risk patterns are characterized based on the safety risk functions that can reveal the temporal distribution of risk within signal cycles. Most of the tested traffic movements have significantly distinct functional risk patterns according to the FANOVA results while risk patterns for most of the traffic movements cannot be differentiated based on the data aggregated at the cycle and approach levels. The proposed functional approach has the potential to be used for facilitating proactive safety management, calibrating microsimulation models for safety evaluation, and optimizing signal timing while considering traffic safety at more disaggregated levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.