Abstract

The accurate assessment of upper limb motion impairment induced by stroke - which represents one of the primary causes of disability world-wide - is the first step to successfully monitor and guide patients' recovery. As of today, the majority of the procedures relies on clinical scales, which are mostly based on ordinal scaling, operator-dependent, and subject to floor and ceiling effects. In this work, we intend to overcome these limitations by proposing a novel approach to analytically evaluate the level of pathological movement coupling, based on the quantification of movement complexity. To this goal, we consider the variations of functional Principal Components applied to the reconstruction of joint angle trajectories of the upper limb during daily living task execution, and compared these variations between two conditions, i.e. the affected and non-affected arm. A Dissimilarity Index, which codifies the severity of the upper limb motor impairment with respect to the movement complexity of the non-affected arm, is then proposed. This methodology was validated as a proof of concept upon a set of four chronic stroke subjects with mild to moderate arm and hand impairments. As a first step, we evaluated whether the derived outcomes differentiate between the two conditions upon the whole data-set. Secondly, we exploited this concept to discern between different subjects and impairment levels. Results show that: i) differences in terms of movement variability between the affected and nonaffected upper limb are detectable and ii) different impairment profiles can be characterized for single subjects using the proposed approach. Although provisional, these results are very promising and suggest this approach as a basis ingredient for the definition of a novel, operator-independent, sensitive, intuitive and widely applicable scale for the evaluation of upper limb motion impairment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.