Abstract

Bypass and laminar-separation-bubble induced transition phenomena are very common in turbine blade cascade flow with high turbulence environment. In order to predict the transition position and aerodynamic characteristics accurately in high turbulence environment, the similarity velocity profiles at various shape factors are obtained by solving the Falkner-Skan boundary layer similarity equations. Then, the local formulas of non-local variables are fitted based on the similarity velocity profiles and combined with a new indicator factor to form transition criterion, so as to construct the turbulence transition model. The transition model was used to predict and simulate the flows of zero pressure gradient plates, T3C series pressure gradient plates, and PAK-B turbine blade cascade. The predicted results under various turbulence and pressure gradients are all according with the experimental data. It proves to be that the model proposed in this paper is reasonable and feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.