Abstract

This work presents a fully nonlinear multi-parameter shell formulation together with a triangular shell finite element for the solution of static boundary value problems. Our approach accounts for thickness variation as additional nodal DOFs, using a director theory with a standard Reissner-Mindlin kinematical assumption. Finite rotations are exactly treated by the Euler-Rodrigues formula in a pure Lagrangean framework, and elastic constitutive equations are consistently derived from fully three-dimensional finite strain constitutive models. The corresponding 6-node triangular shell element is presented as a generalization of the T6-3i triangle introduced by the authors in [3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.