Abstract

We present an algorithm for the numerical solution of nonlinear parabolic partial differential equations. This algorithm extends the classical Feynman–Kac formula to fully nonlinear partial differential equations, by using random trees that carry information on nonlinearities on their branches. It applies to functional, non-polynomial nonlinearities that are not treated by standard branching arguments, and deals with derivative terms of arbitrary orders. A Monte Carlo numerical implementation is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.