Abstract

On-chip detection of biological analytes can enable diagnosis at the point of care. Combining the advantages of microelectromechanical system (MEMS) technology and molecular methods, we present the design of an integrated microfluidic platform, a microelectrochemical sensor (μECS), and its implementation for the detection of methicillin resistance in Staphylococcus aureus. This platform is capable of electrochemically sensing the target analyte in a microfluidic reactor without the usage of bulky electrodes, rendering it useful for in vitro diagnostics. In our experiments, the functionality of the sensor was tested for detecting specific DNA sequences of mecA gene (an indicator of methicillin resistance) over a range of concentrations of DNA (down to 10 pM). Synthetic oligonucleotides and bacterial PCR product were used as a target analyte in Hoechst 33258 marker-based detection and horseradish peroxidase-based detection, respectively. The results revealed that this platform has high sensitivity and selectivity. Also, its compatibility to MEMS processes enables its use with different applications ranging from detecting various types of cancers to endemics. The designed μECS can enable the detection of biological analytes of interest at low cost and high throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.