Abstract

A charge detector is a vital component in neutrino and dark matter detection. The integration of a charge collector in the form of flat pads and readout modules has been proposed as an optimization method as it can reduce noise and installation complexity. As a substrate, fused silica glass has attracted considerable attention due to its low radioactive background properties. In this research, based on the application requirements of a high charge collection rate and low noise, the structure of the charge detector was designed using calculation and simulation methods. The entire manufacturing process is described. In addition, a novel through glass via (TGV) structure composed of a conformal metal layer and a photosensitive material that is easy to fabricate and has high morphological compatibility with via filling is proposed. The curing property of the new material was characterized. A fully integrated solid-state charge detector with 32 groups of TGVs was realized. Additionally, the electrical properties of key structures were tested and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call