Abstract

The importance of energy-constrained processors continues to grow especially for ultra-portable sensor-based platforms for the Internet-of-Things (IoT). Processors for these IoT applications primarily operate at near-threshold (NT) voltages and have multiple power modes. Achieving high conversion efficiency within the DC–DC converter that supplies these processors is critical since energy consumption of the DC–DC/processor system is proportional to the DC–DC converter efficiency. The DC–DC converter must maintain high efficiency over a large load range generated from the multiple power modes of the processor. This paper presents a fully integrated step-down self-oscillating switched-capacitor DC–DC converter that is capable of meeting these challenges. The area of the converter is 0.0104 mm2 and is designed in 28 nm ultra-thin body and buried oxide fully-depleted SOI (UTBB FD-SOI). Back-gate biasing within FD-SOI is utilized to increase the load power range of the converter. With an input of 1 V and output of 460 mV, measurements of the converter show a minimum efficiency of 75% for 79 nW to 200 µW loads. Measurements with an off-chip NT processor load show efficiency up to 86%. The converter’s large load power range and high efficiency make it an excellent fit for energy-constrained processors.

Highlights

  • The relevance of energy-constrained processors [1,2,3,4,5,6] in sensor-based platforms for Internet-of-Things (IoT) applications continues to grow

  • The DC–DC converter is a critical block since the energy consumption of the DC–DC/processor system is proportional to the efficiency of the DC–DC converter

  • Achieving high efficiency in the DC–DC converter is essential to realize energy savings associated with NT operation of the processor

Read more

Summary

Introduction

The relevance of energy-constrained processors [1,2,3,4,5,6] in sensor-based platforms for Internet-of-Things (IoT) applications continues to grow. Achieving high efficiency in the DC–DC converter is essential to realize energy savings associated with NT operation of the processor. TThhee sstteepp--uupp sseellff--oosscciillllaattiinngg ttooppoollooggyy iinnttrroodduucceedd iinn [[88]] sshhoowweedd aann eefffificciieennccyy ooff oovveerr 7700%% oovveerr aa ffiivvee oorrddeerr--ooff--mmaaggnniittuuddee cchhaannggee iinn llooaadd ppoowweerr. TThhiiss eexxcceelllleenntt ppeerrffoorrmmaannccee wwaass aacchhiieevveedd wwiitthh aa sstteepp--uupp ccoonnffiigguurraattiioonn,, aa vvaarryyiinngg ((aabboovvee--tthhrreesshhoolldd)) oouuttppuutt vvoollttaaggee,, aanndd wwiitthh cchhaarrggee--ttrraannssffeerr sswwiittcchheess ooppeerraattiinngg wweellll aabboovvee tthhee tthhrreesshhoolldd vvoollttaaggee. IInn tthhiiss wwoorrkk,, tthhee ffiirrsstt ((22::11)) sstteepp--ddoowwnn sseellff--oosscciillllaattiinngg DDCC––DDCC ccoonnvveerrtteerr wwiitthh aa NNTT oouuttppuutt vvoollttaaggee ((VVOOUUTT))isisppreresesnentetded[9[]9.]I.t Iits idsedsiegsnigedneidn i2n8 2n8mnumltrual-ttrhai-nthbinodbyoadnydabnudribeudrioexdidoexfiudlelyf-udlelyp-ldeteepdleSteOdI S(UOTIB(UBTFBDB-SFODI-)S. TThhiiss rreessuullttss iinn aa llooww oovveerrddrriivvee vvoollttaaggee,, wwhhiicchh ssuubbsseeqquueennttllyy lliimmiittss tthhee mmaaxxiimmuumm llooaadd ccuurrrreenntt tthhaatt tthhee cchhaarrggee--ttrraannssffeerr sswwiittcchheess ccaann hhaannddllee. The delay cell consists of two leakage-based delay blocks [8] (topdelay and botdelay) These delay blocks operate identically and are coupled through a 0.2 pF MIM coupling capacitor Cc. The botdelay delay element from Stage 1 operates as follows. Back-gate biasing affects both the delay cell and charge-transfer switches within the converter

Back-Gate Biasing
Measurement Results
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call