Abstract

A method was used to fabricate a fully inkjet-printed gas sensor matrix on photographic paper. An electrode matrix comprising 36 interdigital electrodes in a high-density layout that is easy to integrate has been fabricated using a combination of insulating ink and commercial silver ink. Molecular-imprinted polymer (MIP) inks were then made using a simple solution mixing method, and these inks were printed together with carbon black ink on the electrode matrix to complete production of the sensor. Finally, experimental dynamic sensing of volatile organic compounds verifies that for detection of gases corresponding to the MIP template molecules, the MIP layer offers improvements in both sensitivity and selectivity when compared with non-imprinted polymer layers. The matrix can produce a response of more than 20% to 3 ppm propenoic acid gas through adjustment of the printing times for the carbon black layer and the MIP layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call