Abstract

The state-of-the-art technology of fabricating printed copper electronics is focussed largely on thermal sintering restricting transition towards heat sensitive flexible substrates. Herein we report a pioneering technology which eliminates the need for conventional sintering. Biopolymer-stabilised copper particles are prepared such that they can be compressed at room temperature to generate air-stable films with very low resistivities (2.05 – 2.33 × 10−8 Ω m at 20 °C). A linear positive correlation of resistivity with temperature verifies excellent metallic character and electron microscopy confirms the formation of films with low porosity (< 4.6%). An aqueous ink formulation is used to fabricate conductive patterns on filter paper, first using a fountain/dip pen and then printing to deposit more defined patterns (R < 2 Ω). The remarkable conductivity and stability of the films, coupled with the sustainability of the approach could precipitate a paradigm-shift in the use of copper inks for printable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.