Abstract

In this work, a block-coupled algorithm is presented, which can compute laminar, incompressible, non-isothermal, viscoelastic flow problems based on the log-conformation tensor approach. The inter-equation coupling of the incompressible Cauchy linear momentum and mass conservation equations is obtained in a procedure based on the Rhie–Chow interpolation. The divergence of the log-conformation tensor term in the linear momentum equations is implicitly discretized in this work. In addition, the velocity field is considered implicitly in the log-conformation tensor constitutive equations by expanding the advection, rotation and the rate of deformation terms with a Taylor series expansion truncated at the second-order error term. Finally, the advection and diffusion terms in the energy equation are also implicitly discretized. The mass, linear momentum, log-conformation tensor constitutive model and energy-discretized linear equations are joined into a block-matrix following a monolithic framework. Validation of the newly developed algorithm is performed for the non-isothermal viscoelastic matrix-based Oldroyd-B fluid flow in the axisymmetric 4:1 planar sudden contraction benchmark problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call