Abstract
A fully-implicit algorithm is developed for the two-dimensional, compressible, Favre-averaged Navier-Stokes equations. It incorporates the standard k-ε turbulence model of Launder and Spalding and the low Reynolds number correction of Chien. The equations are solved using an unstructured grid of triangles with the flow variables stored at the centroids of the cells. A generalization of wall functions including pressure gradient effects is implemented to solve the near-wall region for turbulent flows using a separate algorithm and a hybrid grid. The inviscid fluxes are obtained from Roe's flux difference split method. Linear reconstruction of the flow variables to the cell faces provides second-order spatial accuracy. Turbulent and viscous stresses as well as heat transfer are obtained from a discrete representation of Gauss's theorem. Interpolation of the flow variables to the nodes is achieved using a second-order accurate method. Temporal discretization employs Euler, Trapezoidal or 3-Point Backward differencing. An incomplete LU factorization of the Jacobian matrix is implemented as a preconditioning method. The accuracy of the code and the efficiency of the solution strategy are presented for three test cases: a supersonic turbulent mixing layer, a supersonic laminar compression corner and a supersonic turbulent compression corner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Fluid Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.