Abstract

The automation of scoliosis positioning presents a challenging and often understated task, yet it holds fundamental significance for the automated analysis of spinal morphological anomalies. This paper introduces a novel spinal curve localization model for precisely differentiating the spinal curves and identifying their concave centers. The proposed model contains three components: i) custom spine central line model, to define the spine central line as a combination of several secant line sequences with different polarities; ii) custom curve model, to classify each spinal curve into one of 11 curves types and deduce each its concave centers by several custom formulas; and iii) adapted distance transform and quadratic line fitting algorithm coupled with custom secant line segment searching strategy (DTQL-LS), to search all line segments in the spine and group consecutive line segments with identical polarity into line sequence. Experimental results show that its positioning success rate is close to 99%. Furthermore, it exhibits significant time efficiency, with the average time to process a single image being less than 30 milliseconds. Moreover, even if some image boundaries are blurred, the center of the curve can still be accurately located.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call