Abstract
Temperature has significant effects on modal parameters of a structure. However, it is difficult to do a full-field dynamic measurement and identify modal parameters of the structure under high temperature and working conditions. In this work, three-dimensional digital image correlation combined with Bayesian operational modal analysis is used to yield a full-field non-contact thermal modal testing technique under ambient excitation. Thermal modal verification experiments are carried out on a titanium plate with free boundary conditions under ambient excitation by a low-cost high-temperature dynamic measurement system. Natural frequencies and mode shapes of the plate under different average high temperatures are studied in detail. From the experimental process, it is believed that the thermal modal testing technique proposed in this work is an effective alternative testing technique to traditional contact testing techniques, and after some improvements, one can achieve thermal modal analysis of a structure under high temperature and working conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have