Abstract
Motion sickness research has always been shaped by current events. With the advent of highly automated vehicles (HAVs), the topic is currently being revisited as 60% of users of HAV functions are expected to suffer from motion sickness. Failure to address this condition will jeopardize user acceptance of HAV functions. We investigated the vestibular mechanisms of motion misinterpretation and hypothesized that cross-coupled stimuli induce more sensory conflict and lead to higher motion sickness incidence compared to the non-coupled control condition. We conducted an experiment on a dynamic driving simulator with realistic motion profiles and analyzed the influence of cross-coupled motion on motion sickness incidence. Results show no significant difference in motion sickness incidence between cross-coupled and non-coupled motion profiles. Further research is needed to investigate the thresholds of the Coriolis effect and should include the measurement of compensatory or inertial head motion of participants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have