Abstract

An analytical method incorporating a free-wake analysis with a rotor trim algorithm is developed for predicting rotor wake geometry and blade loading distribution for a helicopter in hover and forward flight. The wake model of this method is based on a multi-filament full-span free wake, using sophisticated circular-arc vortex elements. The blade model is based on the second-order lifting-line theory to improve the calculation of three-dimensional tip effects. A rotor trim method is given, based on the finite-difference approximation of the blade flapping motion and the trim Jacobian matrix. This is subsequently coupled into the free-wake model. In order to demonstrate the capability of the coupled method, comparisons between the calculated results and the available experimental data of the rotor blade flapping motion for a model rotor are presented covering conditions from hover through forward flight. The free-wake geometry and the blade loading distribution at a low advance ratio are calculated for the H-34 helicopter rotor, and the blade loading distribution is compared with both the measured data and calculated results on the basis of the undistorted wake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call