Abstract

A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call