Abstract

Holant problems are a family of counting problems parameterised by sets of algebraic-complex valued constraint functions, and defined on graphs. They arise from the theory of holographic algorithms, which was originally inspired by concepts from quantum computation. Here, we employ quantum information theory to explain existing results about holant problems in a concise way and to derive two new dichotomies: one for a new family of problems, which we call Holant$^+$, and, building on this, a full dichotomy for Holant$^c$. These two families of holant problems assume the availability of certain unary constraint functions -- the two pinning functions in the case of Holant$^c$, and four functions in the case of Holant$^+$ -- and allow arbitrary sets of algebraic-complex valued constraint functions otherwise. The dichotomy for Holant$^+$ also applies when inputs are restricted to instances defined on planar graphs. In proving these complexity classifications, we derive an original result about entangled quantum states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.