Abstract
This paper presents a novel treatment of the canonical extension of a bounded lattice, in the spirit of the theory of natural dualities. At the level of objects, this can be achieved by exploiting the topological representation due to M. Ploščica, and the canonical extension can be obtained in the same manner as can be done in the distributive case by exploiting Priestley duality. To encompass both objects and morphisms the Ploščica representation is replaced by a duality due to Allwein and Hartonas, recast in the style of Ploščica’s paper. This leads to a construction of canonical extension valid for all bounded lattices, which is shown to be functorial, with the property that the canonical extension functor decomposes as the composite of two functors, each of which acts on morphisms by composition, in the manner of hom-functors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.