Abstract

This paper investigates profinite completions of residually finite algebras, drawing on ideas from the theory of natural dualities. Given a class \({\mathcal{A} = \mathbb{ISP}(\mathcal{M})}\), where \({\mathcal{M}}\) is a set, not necessarily finite, of finite algebras, it is shown that each \({{\bf A} \in \mathcal{A}}\) embeds as a topologically dense subalgebra of a topological algebra \({n_{\mathcal{A}}({\bf A})}\) (its natural extension), and that \({n_{\mathcal{A}}({\bf A})}\) is isomorphic, topologically and algebraically, to the profinite completion of A. In addition it is shown how the natural extension may be concretely described as a certain family of relation-preserving maps; in the special case that \({\mathcal{M}}\) is finite and \({\mathcal{A}}\) possesses a single-sorted or multisorted natural duality, the relations to be preserved can be taken to be those belonging to a dualising set. For an algebra belonging to a finitely generated variety of lattice-based algebras, it is known that the profinite completion coincides with the canonical extension. In this situation the natural extension provides a new concrete realisation of the canonical extension, generalising the well-known representation of the canonical extension of a bounded distributive lattice as the lattice of up-sets of the underlying ordered set of its Priestley dual. The paper concludes with a survey of classes of algebras to which the main theorems do, and do not, apply.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call