Abstract

When using spectral methods, a consistent method for tuning the expansion order is often required, especially for time-dependent problems in which oscillations emerge in the solution. In this paper, we propose a frequency-dependent p-adaptive technique that adaptively adjusts the expansion order based on a frequency indicator. Using this p-adaptive technique, combined with recently proposed scaling and moving techniques, we are able to devise an adaptive spectral method in unbounded domains that can capture and handle diffusion, advection, and oscillations. As an application, we use this adaptive spectral method to numerically solve Schrödinger's equation in an unbounded domain and successfully capture the solution's oscillatory behavior at infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.