Abstract
A frequency-domain, non-contact approach to photoacoustic microscopy (PAM) that employs amplitude-modulated (0.1-1 MHz) laser for excitation (638-nm pump) in conjunction with a 2-wave mixing interferometer (532-nm probe) for non-contact detection of photoacoustic waves at the specimen surface is presented. A lock-in amplifier is employed to detect the photoacoustic signal. Illustrative images of tissue-mimicking phantoms, red-blood cells and retinal vasculature are presented. Single-frequency modulation of the pump beam directly provides an image that is equivalent to the 2-dimensional projection of the image volume. Targets located superficially produce phase modulations in the surface-reflected probe beam due to surface vibrations as well as direct intensity modulation in the backscattered probe light due to local changes in pressure and/or temperature. In comparison, the observed modulations in the probe beam due to targets located deeper in the specimen, for example, beyond the ballistic photon regime, predominantly consist of phase modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.