Abstract

In recent years, the emerging non-harmful photoacoustic imaging technology has attracted extensive attention. This technology combines the advantages of high resolution and rich contrast of optical imaging with the advantages of high penetration depth of acoustic imaging. As a branch of photoacoustic imaging field, the photoacoustic microscopic technology, based on its unique focusing method, can achieve higher resolution, such as imaging of individual red blood cells, therefore, photoacoustic microscopy is widely used in the medical field. However, complex structure of the photoacoustic microscopy, expensive equipments of the photoacoustic microscopy, high cost of study of the photoacoustic microscopy, and complicated experimental operation steps cause the development of this technology to be limited. Therefore, it is necessary to combine simulation technology to build a photoacoustic microscopy simulation platform. In order to achieve this goal, in this paper, we build a simulation platform for photoacoustic microscopy based on K-Wave simulation toolbox. This simulation platform avoids the cost of equipment in real photoacoustic microscopy, which saves the research cost. Each module of the system (optical, Acoustics, etc.) can be easily adjusted and only need to modify the various system parameters to analyze the performance of the system. We measures the performance of the constructed photoacoustic microscopy by three-dimensional imaging of the blood vessel. A-Scan, B-Scan and C-Scan were simulated. The performance of the system was measured, with a lateral resolution of approximately 4.176 μm, an axial resolution of 27.056 μm. The establishment of the simulation platform has a significance for the theoretical research of photoacoustic microscopy and its application in biomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call