Abstract

The mutagenic and carcinogenic effects of strong alkylating agents, such as epoxides, have been attributed to their ability to covalently bind DNA in vivo. Most olefins are readily oxidized to reactive epoxides by CytP450. In an effort to develop predictive models for olefin and epoxide mutagenicity, the ring openings of 15 halogen-, alkyl-, alkenyl-, and aryl-substituted epoxides were modeled by quantum-mechanical transition state calculations using MP2/6-31+G(d,p) in the gas phase and in aqueous solution. Free energies of activation (ΔG(‡)) and free energies of reaction (ΔG(rxn)) were computed for each epoxide in the series. This study finds that an aqueous solution ΔG(rxn) threshold value of approximately -14.7 kcal/mol can be used to discern mutagenic/carcinogenic epoxides (ΔG(rxn) < -14.7 kcal/mol) from nonmutagens/noncarcinogens (ΔG(rxn) > -14.7 kcal/mol). The computed reaction thermodynamics are appropriate regardless of ring-opening mechanism in vivo and are thus proposed as an effective in silico screen and design guideline for decreasing potential mutagenicity and carcinogenicity of olefins and their respective epoxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call