Abstract

A continuum theory with account of cavity size fluctuations is employed to study free energy, volume and entropy of activation for nonadiabatic electron transfer (ET) reactions in polar solvents. By using a two-sphere cavity description, model calculations are performed for charge separation and recombination processes in acetonitrile under ambient conditions. It is found that the cavity size at the transition state varies with the free energy of reaction as well as with the thermodynamic conditions. In contrast to the Marcus theory predictions, the volume and entropy of activation show a monotonic behavior with the free energy of reaction and a strong correlation with each other. For example, for a given ET process, the volume and entropy of activation have the same sign. Their values for the charge separation and recombination processes are opposite in sign. These findings are in good qualitative agreement with measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call