Abstract

Electromobility has gained momentum in the last years following the efforts to reduce transportation-related emissions. In this context, efficient charging infrastructure is vital to foster the expansion of electric vehicles. This paper presents a standardized framework for micro-scale analysis of potential charging locations for electric buses aiming at easing the analysis process and promoting the expansion of electric buses. The framework is tailor-made for the Municipality of Stockholm and tested in two city-centre public transport hubs, namely Odenplan and Slussen. However, the framework can be used in other locations by implementing minimum changes. Connecting charging stations to the power grid is identified as the main drawback in city-centre locations due to their high impact on the grid. Lack of available capacity at nearby connection points results in long distance connections, reaching up to 1 km in some cases. Such connections impact the overall cost of electrification directly, as they may account for up to 63% of the total cost. Although other issues regarding space availability and operational efficiency also need to be addressed, such as the lack of enough dwell time to charge the batteries, the framework proves the suitability of these inner-city locations as charging points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call